题目网 > “物理学界”热点
以下是人教版九年级第十课第一框题《正确对待理想与现实》的主要内容。★给理想插上翅膀在我们为实现共同理想而奋斗的过程中,每个人心中还有自己的理想。这些理想是我们在学业成就、未来职业、道德人格甚至家庭生活方面的追求目标,代表着我们对生命的一种盼望,反映了我们对生活的积极态度。人生,就是立足现实,不断追求各种具体理想的历程。人生需要理想。理想就像罗盘,引导人生航船的方向;理想就像航船,一程一程向前推进,不断驶向幸福的彼岸。理想总是指向未来,表现为奋斗目标,对人的行为有导向、驱动和调控作用。如果缺乏理想就会缺少一种稳定、持久的内在激励,容易受到各种干扰;如果缺乏理想,我们的学习与生活就会缺少前进的动力,甚至迷失方向。在人生发展过程中,理想激励着我们不断超越自己,让我们充满了实现自身价值的喜悦,使我们的人生充满幸福。亿万人民在追求自己的理想,特别是追求美好社会理想的过程中,推动着社会向前发展。★通向理想之路我们都希望实现自己的理想,但由于自身条件和外在环境的局限,理想和现实之间总会有些差距。要实现自己的理想,我们应该做些什么呢实现理想,需要对人生做出规划。这个规划要尽可能长远,这样我们就不会在某个阶段找不到目标而迷失方向;这个规划还要尽可能具体,可以把它划分为若干个阶段性目标,这样一步步付出努力.理想就不会仅仅是我们美好的愿望。著名的科学家杨振宁赴美留学时,立志要写一篇实验物理论文。他先来到艾里逊实验室,不久艾里逊实验室传出笑谈:“凡是有爆炸(出事故)的地方一定有杨振宁!”被誉为氢弹之父的泰勒博士一直关注着杨振宁的学术研究,他直率地对杨振宁说:“我认为你不必坚持一定要写一篇实验论文。”杨振宁认真地思考了半天,最后,他不得不痛苦地承认,自己的动手能力确实不强。杨振宁最终接受泰勒的建议,放弃写实验论文的打算。做出这个决定之后,他如释重负,毅然把主攻方向转向理论物理研究。从此,他踏上了一条成为物理学界的一代杰出理论大师的道路。◎如果杨振宁不放弃做实验论文的初衷,结果可能会怎样我们的具体理想不是一成不变的,而是发展变化的。有时我们需要根据自己的能力、兴趣等现实情况对自己的理想进行适当调整,以缩短理想与现实之间的距离,促进理想的实现。理想可以有很多,但通向理想的道路只有一条,那就是脚踏实地、全力以赴。我们要不断增强自身能力,提高自身素质;还需要不屈不挠、坚持不懈……阅读上述教材内容,完成下列教学设计:(1)设计本课题的教学目标。(2)分析本课题的教学重点及其理由。(3)设计本课题的教学导入。
我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。”
读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。
“美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。
自然在她的定律中向物理学家展示的美是一种设计美。因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。
或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。
对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。
基础物理学家选择探求的美是()。
A.日常生活中依赖心理和文化的直觉认识
B.物理学家在审视自然时所用的美学体系是古希腊人的古典建筑美
C.图形的对称性
D.激起审美感受的描述自然的方程

阅读下面的文字,回答36—40题。

我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。”

读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。“美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。自然在她的定律中向物理学家展示的美是一种设计美。

因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。

但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。

36.基础物理学家选择探求的美是()。

A.日常生活中依赖心理和文化的直觉认识

B.物理学家在审视自然时所用的美学体系是古希腊人的古典建筑美

C.图形的对称性

D.激起审美感受的描述自然的方程

我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。”
读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。
“美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。
自然在她的定律中向物理学家展示的美是一种设计美。因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。
或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。
对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。
下列推断与作者本意相悖的是()。
A.对称性的精确数学定义涉及到不变性的概念
B.几何图形在某些操作下保持不变性,这个几何图形就具有对称性
C.正方形的对称性比圆的高
D.矩形的对称性比正方形的还要低
我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。”
读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。
“美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。
自然在她的定律中向物理学家展示的美是一种设计美。因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。
或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。
对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。
按原文的意思,作者将对称等同于美是因为()。
A.圆在绕它的中心旋转时是不变的
B.圆具有更高的对称性
C.按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述
D.对称性图形更能让人愉悦
我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。”
读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。
“美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。
自然在她的定律中向物理学家展示的美是一种设计美。因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。
或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。
对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。
作者没有肯定的观点是()。
A.物理学家已经发现了某些奇妙的东西
B.物理学家研究自然定律中展示的一种设计美
C.物理学家审视自然时所用的美学体系是从朴素的几何确定性中吸取精髓的
D.物理学是具有精确的预言性,而不适于审美沉思的科学

阅读下面的文字,回答36—40题。我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。” 读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。 “美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。 自然在她的定律中向物理学家展示的美是一种设计美。因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。 或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。 对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。

第36题:

基础物理学家选择探求的美是()。

A.日常生活中依赖心理和文化的直觉认识

B.物理学家在审视自然时所用的美学体系是古希腊人的古典建筑美

C.图形的对称性

D.激起审美感受的描述自然的方程

我和我在基础物理学界的同事们是爱因斯坦的理性的后继者,乐于自认为我们是在探求美。有些物理方程丑得让人不愿多看一眼.更不用说把它们写下来了。毫无疑问,终极设计者只会用美的方程来设计这个宇宙!我们宣称,如果有两个都可用来描述自然的方程,我们总要选择能激起我们的审美感受的那一个。“让我们先来关心美吧,真用不着我们操心!”这就是基础物理学家们的呼声。”
读者也许会把物理看成一个具有精确预言性而不适于审美沉思的科学。其实,审美事实上已经成了当代物理学的驱动力。物理学家已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的。我希望与你们分享的正是这种奇妙的感受。
“美”一次被赋予了一定的内涵。在日常生活中,我们对美的感受是依赖于心理、文化、社会甚至常常是生理等因素的。物理学显然不会关心这一类的美。
自然在她的定律中向物理学家展示的美是一种设计美。因强调几何对称,这种美在一定程度上使我们想到了古典建筑。物理学家在审视自然时所用的美学体系也是从这种朴素的几何确定性中吸取精髓的。请在纸上画出一个圆、一个正方形和一个矩形。快,哪一个图形更能使你愉悦?按古希腊人的观点。多数人大概会选择圆。当然,正方形甚至矩形也不会没有热忱的崇拜者。但存在一个客观的判据,它按圆形、正方形、矩形的次序来排定三种图形的名次,按此次序:圆具有更高的对称性。
或许我不该问哪一个图形更美,而该问哪一个图形的对称性更高。但是,按古希腊人对球形以及它们所构成的天体的完美性的雄辩论述,我还是要继续将对称等同于美。
对称性的精确数学定义涉及到不变性的概念。如果一个几何图形在某些操作下保持不变,就说这个图形在这些操作之下具有不变性。例如,圆在绕它的中心旋转时是不变的。作为一个抽象实体,不管我们把它转17度还是转其它角度,这个圆都不会变。而正方形就不一样,只有绕它的中心转90°、180°270°和360°时(考虑对几何图形的影响时,转360°和转0°或不转是等价的)才保持不变。矩形的对称性比正方形的还要低,只有绕它的中心转180°和360°时才保持不变。
对“让我们先来关心美吧,真用不着我们操心!”的解释不符合原文意思的一项是()。
A.基础物理学的研究者认为只要把握“美"的内涵,会用美的方程设计这个宇宙就获得了开启当代物理学的金钥匙
B.审美事实上已经成了当代物理学的驱动力
C.终极设计者只会用美的方程来设计这个宇宙
D.自然在她的定律中向物理学家展示的美是一种设计美
石墨烯(Graphene)是一种从石墨材料中剥离出来、由单层碳原子构成的六角形蜂巢晶格的平面二维碳材料。实际上,石墨烯本来就存在于自然界,只是难以剥离出单层结构。曾经,物理学家普遍认为,热力学涨落不允许任何二维晶体在有限温度下存在,石墨烯不过是一种假设性结构。受此理论影响、科学家们对从石墨中分享出单层独立存在的石墨烯持悲观态度。2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫的研究改变了人们的认知。他们发现了一种得到石墨薄片的简单方法——从高定向热解石墨中剥离出石墨片,将薄片的两面粘在一种特殊胶带上,撕开胶带,就能把石墨片一分为二,不断重复这样的操作,最后就得到了仅由一层碳原子构成的薄片,即石墨烯。该方法及单层石墨烯的获取震撼了凝聚体物理学界。随后三年内,安德烈·海姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,这为石墨烯的工业化生产进一步铺垫了理论和方法道路,两人也因此获得了2010年诺贝尔物理学奖。
因具备极强的稳定性、导电性、导热性和机械承受力,石墨烯是目前为止最理想的二维纳材料,被誉为“新材料之王”。在美国,2011年,IBM公司向媒体展示了其运行速度最快的石墨烯晶体管,为石墨烯芯片的商业化生产提供了方向,从而使之应用于无线通信、网络、雷达和影像等多个领域;2012年,Nanotek仪器公司开发出一种新型储能设备,可以将电动汽车的充电时间从过去的数小时缩短至不到一分钟。在中国,2014年,山西煤化所系统地研究了氧化石墨烯薄膜在炭化过程中的导热性能演变机制,并获得高性能热还原氧化石墨烯薄膜,它能够满足LED照明、计算机、卫星电路、激光武器、手持终端设备等高功率、高集成度系统的散热需求;2015年,全球首批3万部石墨烯手机在重庆发布,该手机采用了最新研制的石墨烯触摸屏、电池和导热膜。在日本,2016年,日本东北大学与西班牙阿利坎特大学等组成的研究小组宣布开发出了石墨烯中孔海绵体(GMS)。这项研究解决了二维片状石墨烯结构在制成同样的多孔体时,同于会形成小断片状的构造面而产生的导电率下降的问题,还解决了大量石墨烯端部(边缘)容易腐蚀的问题,该研究成果有望构筑基于新原理的能量转换元器件。
2015年11月,某公司发布手机新品,宣称采用全新的石墨烯电池,其快充技术5分钟即可将3000mAh电池的电量充至48%。但是,有研究报告称,该手机采用的是改良的聚合物技术,并未直接使用石墨烯材料,发布新手机的公司对此也表示了认可。北京有色金属研究院的刘工程师认为,“即使电极材料中添加了石墨烯材料也不能就简单定义为石墨烯电池。现在关于石墨烯电池的新闻报道都仅限于一些皮毛,没有电池的结构和反应机理示意图,也缺乏能量密度、电压、循环寿命等具体技术参数。对于电池工业说来,没有这些信息,报道缺乏最基本的可信度,虚假夸大宣传的可能性极大。”刘工程师称:“石墨烯成本过高,本身具有纳米材料的高比表面积等性质与现在锂离子电池工业技术体系不兼容,这使得‘石墨烯电池’这个技术接近于不存在,其噱头意义远大于实用价值。”业内人士指出,制备技术难题是阻碍石墨烯实现其潜在价值的最大“拦路虎”。曼彻斯特大学的教授们首次提取出的石墨烯,是直接从石墨中剥离的,这种原始方法不可能用于大规模工业生产。此后,人们虽然通过化学气相沉积法、溶剂剥离法、液相氧化还原法等多种手段制备出了石墨烯,却在质量、成本、产率等方面各有劣势,无法实现批量生产,科学家们还在继续探寻真正适用于产业化生产的制备工艺。尽管众多上市公司纷纷涉足石墨烯领域,但真正的高端技术仍停留在实验室内,而多次被拿来炒作的“石墨烯电池”,更是被一些业内专家称为“弥天大谎”。不过,在清华大学材料学院的朱教授看来,说技术完全不存在的观点也过于绝对,“随着技术和工艺成熟,未来通过石墨烯提升电池性能是可以实现的”。中国石墨烯联盟秘书长表示,石墨烯概念股股份已经开始透支部分预期,但他依然相信随着产业化进程的加快,概念也可能变为现实。
根据材料,简述目前业内质疑石墨烯技术商业开发的主要观点。
要求:紧密结合材料,提炼观点,不超过150字。
石墨烯(Graphene)是一种从石墨材料中剥离出来、由单层碳原子构成的六角形蜂巢晶格的平面二维碳材料。实际上,石墨烯本来就存在于自然界,只是难以剥离出单层结构。曾经,物理学家普遍认为,热力学涨落不允许任何二维晶体在有限温度下存在,石墨烯不过是一种假设性结构。受此理论影响、科学家们对从石墨中分享出单层独立存在的石墨烯持悲观态度。2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫的研究改变了人们的认知。他们发现了一种得到石墨薄片的简单方法——从高定向热解石墨中剥离出石墨片,将薄片的两面粘在一种特殊胶带上,撕开胶带,就能把石墨片一分为二,不断重复这样的操作,最后就得到了仅由一层碳原子构成的薄片,即石墨烯。该方法及单层石墨烯的获取震撼了凝聚体物理学界。随后三年内,安德烈·海姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,这为石墨烯的工业化生产进一步铺垫了理论和方法道路,两人也因此获得了2010年诺贝尔物理学奖。
因具备极强的稳定性、导电性、导热性和机械承受力,石墨烯是目前为止最理想的二维纳材料,被誉为“新材料之王”。在美国,2011年,IBM公司向媒体展示了其运行速度最快的石墨烯晶体管,为石墨烯芯片的商业化生产提供了方向,从而使之应用于无线通信、网络、雷达和影像等多个领域;2012年,Nanotek仪器公司开发出一种新型储能设备,可以将电动汽车的充电时间从过去的数小时缩短至不到一分钟。在中国,2014年,山西煤化所系统地研究了氧化石墨烯薄膜在炭化过程中的导热性能演变机制,并获得高性能热还原氧化石墨烯薄膜,它能够满足LED照明、计算机、卫星电路、激光武器、手持终端设备等高功率、高集成度系统的散热需求;2015年,全球首批3万部石墨烯手机在重庆发布,该手机采用了最新研制的石墨烯触摸屏、电池和导热膜。在日本,2016年,日本东北大学与西班牙阿利坎特大学等组成的研究小组宣布开发出了石墨烯中孔海绵体(GMS)。这项研究解决了二维片状石墨烯结构在制成同样的多孔体时,同于会形成小断片状的构造面而产生的导电率下降的问题,还解决了大量石墨烯端部(边缘)容易腐蚀的问题,该研究成果有望构筑基于新原理的能量转换元器件。
2015年11月,某公司发布手机新品,宣称采用全新的石墨烯电池,其快充技术5分钟即可将3000mAh电池的电量充至48%。但是,有研究报告称,该手机采用的是改良的聚合物技术,并未直接使用石墨烯材料,发布新手机的公司对此也表示了认可。北京有色金属研究院的刘工程师认为,“即使电极材料中添加了石墨烯材料也不能就简单定义为石墨烯电池。现在关于石墨烯电池的新闻报道都仅限于一些皮毛,没有电池的结构和反应机理示意图,也缺乏能量密度、电压、循环寿命等具体技术参数。对于电池工业说来,没有这些信息,报道缺乏最基本的可信度,虚假夸大宣传的可能性极大。”刘工程师称:“石墨烯成本过高,本身具有纳米材料的高比表面积等性质与现在锂离子电池工业技术体系不兼容,这使得‘石墨烯电池’这个技术接近于不存在,其噱头意义远大于实用价值。”业内人士指出,制备技术难题是阻碍石墨烯实现其潜在价值的最大“拦路虎”。曼彻斯特大学的教授们首次提取出的石墨烯,是直接从石墨中剥离的,这种原始方法不可能用于大规模工业生产。此后,人们虽然通过化学气相沉积法、溶剂剥离法、液相氧化还原法等多种手段制备出了石墨烯,却在质量、成本、产率等方面各有劣势,无法实现批量生产,科学家们还在继续探寻真正适用于产业化生产的制备工艺。尽管众多上市公司纷纷涉足石墨烯领域,但真正的高端技术仍停留在实验室内,而多次被拿来炒作的“石墨烯电池”,更是被一些业内专家称为“弥天大谎”。不过,在清华大学材料学院的朱教授看来,说技术完全不存在的观点也过于绝对,“随着技术和工艺成熟,未来通过石墨烯提升电池性能是可以实现的”。中国石墨烯联盟秘书长表示,石墨烯概念股股份已经开始透支部分预期,但他依然相信随着产业化进程的加快,概念也可能变为现实。
安德烈·海姆和康斯坦丁·诺沃肖洛夫因为推翻了热力学涨落理论中“石墨烯无法存在于自然界”的传统认知而获得了2010年度诺贝尔物理学奖。
石墨烯(Graphene)是一种从石墨材料中剥离出来、由单层碳原子构成的六角形蜂巢晶格的平面二维碳材料。实际上,石墨烯本来就存在于自然界,只是难以剥离出单层结构。曾经,物理学家普遍认为,热力学涨落不允许任何二维晶体在有限温度下存在,石墨烯不过是一种假设性结构。受此理论影响、科学家们对从石墨中分享出单层独立存在的石墨烯持悲观态度。2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫的研究改变了人们的认知。他们发现了一种得到石墨薄片的简单方法——从高定向热解石墨中剥离出石墨片,将薄片的两面粘在一种特殊胶带上,撕开胶带,就能把石墨片一分为二,不断重复这样的操作,最后就得到了仅由一层碳原子构成的薄片,即石墨烯。该方法及单层石墨烯的获取震撼了凝聚体物理学界。随后三年内,安德烈·海姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,这为石墨烯的工业化生产进一步铺垫了理论和方法道路,两人也因此获得了2010年诺贝尔物理学奖。
因具备极强的稳定性、导电性、导热性和机械承受力,石墨烯是目前为止最理想的二维纳材料,被誉为“新材料之王”。在美国,2011年,IBM公司向媒体展示了其运行速度最快的石墨烯晶体管,为石墨烯芯片的商业化生产提供了方向,从而使之应用于无线通信、网络、雷达和影像等多个领域;2012年,Nanotek仪器公司开发出一种新型储能设备,可以将电动汽车的充电时间从过去的数小时缩短至不到一分钟。在中国,2014年,山西煤化所系统地研究了氧化石墨烯薄膜在炭化过程中的导热性能演变机制,并获得高性能热还原氧化石墨烯薄膜,它能够满足LED照明、计算机、卫星电路、激光武器、手持终端设备等高功率、高集成度系统的散热需求;2015年,全球首批3万部石墨烯手机在重庆发布,该手机采用了最新研制的石墨烯触摸屏、电池和导热膜。在日本,2016年,日本东北大学与西班牙阿利坎特大学等组成的研究小组宣布开发出了石墨烯中孔海绵体(GMS)。这项研究解决了二维片状石墨烯结构在制成同样的多孔体时,同于会形成小断片状的构造面而产生的导电率下降的问题,还解决了大量石墨烯端部(边缘)容易腐蚀的问题,该研究成果有望构筑基于新原理的能量转换元器件。
2015年11月,某公司发布手机新品,宣称采用全新的石墨烯电池,其快充技术5分钟即可将3000mAh电池的电量充至48%。但是,有研究报告称,该手机采用的是改良的聚合物技术,并未直接使用石墨烯材料,发布新手机的公司对此也表示了认可。北京有色金属研究院的刘工程师认为,“即使电极材料中添加了石墨烯材料也不能就简单定义为石墨烯电池。现在关于石墨烯电池的新闻报道都仅限于一些皮毛,没有电池的结构和反应机理示意图,也缺乏能量密度、电压、循环寿命等具体技术参数。对于电池工业说来,没有这些信息,报道缺乏最基本的可信度,虚假夸大宣传的可能性极大。”刘工程师称:“石墨烯成本过高,本身具有纳米材料的高比表面积等性质与现在锂离子电池工业技术体系不兼容,这使得‘石墨烯电池’这个技术接近于不存在,其噱头意义远大于实用价值。”业内人士指出,制备技术难题是阻碍石墨烯实现其潜在价值的最大“拦路虎”。曼彻斯特大学的教授们首次提取出的石墨烯,是直接从石墨中剥离的,这种原始方法不可能用于大规模工业生产。此后,人们虽然通过化学气相沉积法、溶剂剥离法、液相氧化还原法等多种手段制备出了石墨烯,却在质量、成本、产率等方面各有劣势,无法实现批量生产,科学家们还在继续探寻真正适用于产业化生产的制备工艺。尽管众多上市公司纷纷涉足石墨烯领域,但真正的高端技术仍停留在实验室内,而多次被拿来炒作的“石墨烯电池”,更是被一些业内专家称为“弥天大谎”。不过,在清华大学材料学院的朱教授看来,说技术完全不存在的观点也过于绝对,“随着技术和工艺成熟,未来通过石墨烯提升电池性能是可以实现的”。中国石墨烯联盟秘书长表示,石墨烯概念股股份已经开始透支部分预期,但他依然相信随着产业化进程的加快,概念也可能变为现实。
(1)下列选项中,最适合做本文标题的是()
A.石墨烯的前世今生
B.石墨烯:原理、发现与运用
C.石墨烯的商业之路
D.石墨烯的特性与运用
石墨烯(Graphene)是一种从石墨材料中剥离出来、由单层碳原子构成的六角形蜂巢晶格的平面二维碳材料。实际上,石墨烯本来就存在于自然界,只是难以剥离出单层结构。曾经,物理学家普遍认为,热力学涨落不允许任何二维晶体在有限温度下存在,石墨烯不过是一种假设性结构。受此理论影响、科学家们对从石墨中分享出单层独立存在的石墨烯持悲观态度。2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫的研究改变了人们的认知。他们发现了一种得到石墨薄片的简单方法——从高定向热解石墨中剥离出石墨片,将薄片的两面粘在一种特殊胶带上,撕开胶带,就能把石墨片一分为二,不断重复这样的操作,最后就得到了仅由一层碳原子构成的薄片,即石墨烯。该方法及单层石墨烯的获取震撼了凝聚体物理学界。随后三年内,安德烈·海姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,这为石墨烯的工业化生产进一步铺垫了理论和方法道路,两人也因此获得了2010年诺贝尔物理学奖。
因具备极强的稳定性、导电性、导热性和机械承受力,石墨烯是目前为止最理想的二维纳材料,被誉为“新材料之王”。在美国,2011年,IBM公司向媒体展示了其运行速度最快的石墨烯晶体管,为石墨烯芯片的商业化生产提供了方向,从而使之应用于无线通信、网络、雷达和影像等多个领域;2012年,Nanotek仪器公司开发出一种新型储能设备,可以将电动汽车的充电时间从过去的数小时缩短至不到一分钟。在中国,2014年,山西煤化所系统地研究了氧化石墨烯薄膜在炭化过程中的导热性能演变机制,并获得高性能热还原氧化石墨烯薄膜,它能够满足LED照明、计算机、卫星电路、激光武器、手持终端设备等高功率、高集成度系统的散热需求;2015年,全球首批3万部石墨烯手机在重庆发布,该手机采用了最新研制的石墨烯触摸屏、电池和导热膜。在日本,2016年,日本东北大学与西班牙阿利坎特大学等组成的研究小组宣布开发出了石墨烯中孔海绵体(GMS)。这项研究解决了二维片状石墨烯结构在制成同样的多孔体时,同于会形成小断片状的构造面而产生的导电率下降的问题,还解决了大量石墨烯端部(边缘)容易腐蚀的问题,该研究成果有望构筑基于新原理的能量转换元器件。
2015年11月,某公司发布手机新品,宣称采用全新的石墨烯电池,其快充技术5分钟即可将3000mAh电池的电量充至48%。但是,有研究报告称,该手机采用的是改良的聚合物技术,并未直接使用石墨烯材料,发布新手机的公司对此也表示了认可。北京有色金属研究院的刘工程师认为,“即使电极材料中添加了石墨烯材料也不能就简单定义为石墨烯电池。现在关于石墨烯电池的新闻报道都仅限于一些皮毛,没有电池的结构和反应机理示意图,也缺乏能量密度、电压、循环寿命等具体技术参数。对于电池工业说来,没有这些信息,报道缺乏最基本的可信度,虚假夸大宣传的可能性极大。”刘工程师称:“石墨烯成本过高,本身具有纳米材料的高比表面积等性质与现在锂离子电池工业技术体系不兼容,这使得‘石墨烯电池’这个技术接近于不存在,其噱头意义远大于实用价值。”业内人士指出,制备技术难题是阻碍石墨烯实现其潜在价值的最大“拦路虎”。曼彻斯特大学的教授们首次提取出的石墨烯,是直接从石墨中剥离的,这种原始方法不可能用于大规模工业生产。此后,人们虽然通过化学气相沉积法、溶剂剥离法、液相氧化还原法等多种手段制备出了石墨烯,却在质量、成本、产率等方面各有劣势,无法实现批量生产,科学家们还在继续探寻真正适用于产业化生产的制备工艺。尽管众多上市公司纷纷涉足石墨烯领域,但真正的高端技术仍停留在实验室内,而多次被拿来炒作的“石墨烯电池”,更是被一些业内专家称为“弥天大谎”。不过,在清华大学材料学院的朱教授看来,说技术完全不存在的观点也过于绝对,“随着技术和工艺成熟,未来通过石墨烯提升电池性能是可以实现的”。中国石墨烯联盟秘书长表示,石墨烯概念股股份已经开始透支部分预期,但他依然相信随着产业化进程的加快,概念也可能变为现实。
(2)下列对文中划线句了的理解,正确的是:
A.石墨烯产业目前技术并未完全成熟,存在着过度炒作现象
B.人们原本对石墨烯的商业开发前景十分看好,如今较为悲观
C.人们原本对石墨烯的商业开发前景并不看好,如今大为改观
D.石墨烯产业当前发展又快又好,已经提前实现了一些目标
石墨烯(Graphene)是一种从石墨材料中剥离出来、由单层碳原子构成的六角形蜂巢晶格的平面二维碳材料。实际上,石墨烯本来就存在于自然界,只是难以剥离出单层结构。曾经,物理学家普遍认为,热力学涨落不允许任何二维晶体在有限温度下存在,石墨烯不过是一种假设性结构。受此理论影响、科学家们对从石墨中分享出单层独立存在的石墨烯持悲观态度。2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫的研究改变了人们的认知。他们发现了一种得到石墨薄片的简单方法——从高定向热解石墨中剥离出石墨片,将薄片的两面粘在一种特殊胶带上,撕开胶带,就能把石墨片一分为二,不断重复这样的操作,最后就得到了仅由一层碳原子构成的薄片,即石墨烯。该方法及单层石墨烯的获取震撼了凝聚体物理学界。随后三年内,安德烈·海姆和康斯坦丁·诺沃肖洛夫在单层和双层石墨烯体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应,这为石墨烯的工业化生产进一步铺垫了理论和方法道路,两人也因此获得了2010年诺贝尔物理学奖。
因具备极强的稳定性、导电性、导热性和机械承受力,石墨烯是目前为止最理想的二维纳材料,被誉为“新材料之王”。在美国,2011年,IBM公司向媒体展示了其运行速度最快的石墨烯晶体管,为石墨烯芯片的商业化生产提供了方向,从而使之应用于无线通信、网络、雷达和影像等多个领域;2012年,Nanotek仪器公司开发出一种新型储能设备,可以将电动汽车的充电时间从过去的数小时缩短至不到一分钟。在中国,2014年,山西煤化所系统地研究了氧化石墨烯薄膜在炭化过程中的导热性能演变机制,并获得高性能热还原氧化石墨烯薄膜,它能够满足LED照明、计算机、卫星电路、激光武器、手持终端设备等高功率、高集成度系统的散热需求;2015年,全球首批3万部石墨烯手机在重庆发布,该手机采用了最新研制的石墨烯触摸屏、电池和导热膜。在日本,2016年,日本东北大学与西班牙阿利坎特大学等组成的研究小组宣布开发出了石墨烯中孔海绵体(GMS)。这项研究解决了二维片状石墨烯结构在制成同样的多孔体时,同于会形成小断片状的构造面而产生的导电率下降的问题,还解决了大量石墨烯端部(边缘)容易腐蚀的问题,该研究成果有望构筑基于新原理的能量转换元器件。
2015年11月,某公司发布手机新品,宣称采用全新的石墨烯电池,其快充技术5分钟即可将3000mAh电池的电量充至48%。但是,有研究报告称,该手机采用的是改良的聚合物技术,并未直接使用石墨烯材料,发布新手机的公司对此也表示了认可。北京有色金属研究院的刘工程师认为,“即使电极材料中添加了石墨烯材料也不能就简单定义为石墨烯电池。现在关于石墨烯电池的新闻报道都仅限于一些皮毛,没有电池的结构和反应机理示意图,也缺乏能量密度、电压、循环寿命等具体技术参数。对于电池工业说来,没有这些信息,报道缺乏最基本的可信度,虚假夸大宣传的可能性极大。”刘工程师称:“石墨烯成本过高,本身具有纳米材料的高比表面积等性质与现在锂离子电池工业技术体系不兼容,这使得‘石墨烯电池’这个技术接近于不存在,其噱头意义远大于实用价值。”业内人士指出,制备技术难题是阻碍石墨烯实现其潜在价值的最大“拦路虎”。曼彻斯特大学的教授们首次提取出的石墨烯,是直接从石墨中剥离的,这种原始方法不可能用于大规模工业生产。此后,人们虽然通过化学气相沉积法、溶剂剥离法、液相氧化还原法等多种手段制备出了石墨烯,却在质量、成本、产率等方面各有劣势,无法实现批量生产,科学家们还在继续探寻真正适用于产业化生产的制备工艺。尽管众多上市公司纷纷涉足石墨烯领域,但真正的高端技术仍停留在实验室内,而多次被拿来炒作的“石墨烯电池”,更是被一些业内专家称为“弥天大谎”。不过,在清华大学材料学院的朱教授看来,说技术完全不存在的观点也过于绝对,“随着技术和工艺成熟,未来通过石墨烯提升电池性能是可以实现的”。中国石墨烯联盟秘书长表示,石墨烯概念股股份已经开始透支部分预期,但他依然相信随着产业化进程的加快,概念也可能变为现实。
二维石墨烯的主要特性及其相应可能的商业开发有:
A.具有极强的导电性,可开发新型储能设备
B.具有极强的导热性,可开发高性能散热材料
C.具有极强的稳定性,可用于开发石墨烯多孔海绵体
D.具有极强的机械承受力,可用于制作耐腐蚀的能量转换元器件
从20世纪30年代至今,科学界从未停止对暗物质的探索。那么,什么是暗物质?找到它难在哪里?探索它又有何意义?2015年12月17日,由中国科学院总体研发的我国首颗暗物质粒子探测卫星“悟空”发射升空,它的一个使命就是寻找暗物质存在的证据。
一般情况下,凭借肉眼或借助工具就能看到普通物质,但暗物质是个例外。天文学家茨威基研究发现:在星系团中,看得见的星系占总质量的1/300以下,而99%以上的质量是看不见的。这一结论意味着星系团中有某种神秘物质被人忽略。
在当时,多数人并不认同茨威基的观点。不过,后来的宇宙观测结果越来越验证这一观点的可信性。因为按照万有引力原理,物体围绕中心旋转,越往外转动速度越低。但20世纪70年代,科学家在观测宇宙一些星系中的恒星运行速度时发现,往外看,围绕中心的速度并不都是衰减下去,有些和内圈恒星的速度差不多。理论上讲,越往外,物质越少,引力越小,速度也应该越低。科学家由此推测:外圈的那些能被直接观测到的、数出来的星星数目变少了,但其实内部的物质数量并没有减少,引力也没有变小,只不过没被观测到而已。这些天文观测直接看不到的物质被称为暗物质。
“虽然我们从来没有直接‘看到’宇宙中存在这种物质,但我们却发现了由于这种物质的引力作用对于其他可见的物质运动影响,这是我们断定宇宙中存在这种物质的理由。”中科院高能物理所研究员毕效军说。
暗物质的物理组成到底是什么?毕效军说,通常认为暗物质是一种不发光、不发出电磁波、不参与电磁相互作用的全新粒子。与通常物质一样,暗物质也有引力作用。根据引力效应,天文学家估算,宇宙由27%的暗物质、68%的暗能量和5%的普通物质组成。这些看不见的“大多数”就像披上了隐形衣一样,使长期以来在宇宙中占比最多的东西反而是人类最迟也是最难了解的,至今仅知道它们存在,还不清楚它们的性质。
暗物质如何产生?毕效军认为,和普通物质一样,暗物质应该也来自于宇宙大爆炸。在宇宙早期某一个时刻,宇宙温度非常高,粒子能量非常强,它们剧烈碰撞,在这种相互作用下,包括暗物质在内的各种各样的物质由此产生。
为了解暗物质这种存在于宇宙的隐身神秘“居民”,科学家做出了一些基于假设的理论模型,但物理学界渴望有实验研究的结果,特别是直接探测的结果,对这些理论模型进行验证。
中科院高能物理所研究员张新民介绍,国家科学界研究最多也最被粒子物理学家看好的暗物质模型是“弱作用重粒子”。主要因为这种粒子与普通物质有弱相互作用,所以具有可探测性。相比之下,其他暗物质模型,由于与普通物质的相互作用更弱,在现有的实验水平下探测到的可能性更小。
暗物质难以探测,除了不发光外,还在于它的速度快,难以捕捉。科学家测算,暗物质粒子每秒的运动速度为220千米,是56式半自动步枪子弹出膛速度的300倍。而且它们穿过人体时,不会留下任何痕迹,人完全没有感觉。
“暗物质粒子必须有相互作用我们才能‘看’得到它,但是现在具体是什么样形式的相互作用,我们是不知道的。”毕效军认为,如果能够测量到这种相互作用,就有望成功地探测到暗物质。
暗物质粒子探测卫星科学应用系统副总设计师范一中说,目前,暗物质粒子存在的证据都是通过引力相互作用发现的,实验中还没有确定的暗物质信号被探测到。国际上对暗物质的探测方式主要分为3类。第一类是加速器探测,这方面主要的探测设备是欧洲核子中心的大型强子对撞机;第二类是在地下进行的直接探测,中国在四川锦屏山地下实验室中正在开展相关实验;第三类是间接探测,主要是在空间进行。因为物理学家们认为暗物质粒子的湮灭或衰变会形成各种正粒子、反粒子对,这些粒子对在太空中传播就成了宇宙中宇宙射线和伽马射线的一部分。我国发射的“悟空”就是采用这种探测方式,收集高能宇宙线粒子和伽马射线光子,通过其能谱、空间分布分析来寻找暗物质粒子存在的证据。
现在,国际上一项瞩目的工作是将强磁场和精密探测器送到太空。阿尔法磁谱仪是人类送入宇宙空间的第一个大型磁谱仪。2013年美籍华人物理学家、诺贝尔奖获得者丁肇中领导的研究团队宣布,阿尔法磁谱仪发现了“弱作用重粒子”存在的依据,而“弱作用重粒子”就是一种暗物质的候选体,这意味着人类向认识暗物质方向前进了重要一步。2014年9月,丁肇中团队和东南大学发布合作研究成果表示,暗物质存在实验的6个有关特征中,已有5个得到确认,进一步显示宇宙射线中过量的正电子可能来自暗物质。
国际科学界认为,未来10到20年将是暗物质探测的黄金时代。
目前国际上对暗物质的探测方法只有3种。